Слаботочка Книги

0 1 [2] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

Этим термином можно назвать кратко среднюю наработку до отказа и среднюю наработку между отказами, когда оба показателя совпадают. Для совпадения последних необходимо, чтобы после каждого отказа объект восстанавливался до первоначального состояния.

Заданная наработка - наработка, в течение которой объект должен безотказно работать для выполнения своих функций.

Среднее время простоя - математическое ожидание случайного времени вынужденного нерегламентированного пребывания объекта в состоянии неработоспособности.

Среднее время восстановления - математическое ожидание случайной продолжительности восстановления работоспособности (собственно ремонта).

Вероятность восстановления - вероятность того, что фактическая продолжительность восстановления работоспособности объекта не превысит заданной.

Показатель технической эффективности функционирования - мера качества собственно функционирования объекта или целесообразности использования объекта для выполнения заданных функций.

Показатель технической эффективности функционирования объекта определяется количественно как математическое ожидание выходного эффекта объекта, т. е. в зависимости от назначения системы принимает конкретное выражение. Часто показатель эффективности функционирования определяется как полная вероятность выполнения объектом задачи с учетом возможного снижения качества его работы из-за возникновения частичных отказов.

Коэффициент сохранения эффективности - показатель, характеризующий влияние степени надежности элементов объекта на техническую эффективность, представляемый в виде отношения показателя технической эффективности функционирования при реальной надежности к максимальному возможному значению этого показателя (т. е. соответствующему состоянию полной работоспособности всех элементов объекта).

Примечание. При введении коэффициента сохранения эффективности предполагается, что выходной эффект системы является физической неотрицательной величиной, которая возрастает при увеличении надежности любого из элементов объекта (это может быть, например, объем произведенной продукции, быстродействие и т.. п.).

Нестационарный коэффициент готовности -вероятность того, что объект окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), для которого известно начальное состояние этого объекта.

Средний коэффициент готовности - усредненное на заданном интервале времени значение нестационарного коэффициента готовности.

Стационарный коэффициент готовности (для краткости просто коэффициент готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольно выбранный момент времени в установившемся процессе эксплуатации. (Коэффициент готовности может быть определен и как отношение времени, в течение которого объект находится в работоспособном состоянии, к общей длительности рассматриваемого периода. Предполагается, что рассматривается установившийся процесс эксплуатации, математической моделью которого является стационарный случайный процесс.)

Коэффициент готовности является предельным значением, к которому стремятся и нестационарный, и средний коэффициенты готовности с ростом рассматри-ваэмого интервала времени.

Часто используются показатели, характеризующие простой объекта, - так называемые коэффициенты простоя соответствующего типа. Каждому коэффициенту готовности можно поставить в соответствие определенный коэффициент простоя, численно равный дополнению соответствующего коэффициента готовности до единицы. В соответствующих определениях работоспособность следует заменить на неработоспособность.



Нестационарный коэффициент оперативной готовности - вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), и начиная с этого момента времени будет работать безедказно в течение заданного интервала времени.

Средний коэффициент оперативной готовности - усредненное на заданном интервале значение нестационарного коэффициента оперативной готовности:

Стационарный коэффициент оперативной готовности (для краткости просто коэффициент оперативной готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольный момент времени и с этого момента времени будет работать безотказно в течение заданного интервала времени.

Предполагается, что рассматривается установившийся процесс эксплуатации, которому соответствует в качестве математической модели стационарный случайный процесс.

Коэффициент технического использования - отношение средней наработки объекта в единицах времени за некоторый период эксплуатации к сумме средних значений наработки, времени простоя, обусловленного техническим обслуживанием, и времени ремонтов за тот же период эксплуатации.

Интенсивность отказов - условная плотность вероятности отказа невосста-навливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.

Параметр потока отказов - плотность вероятности возникновения отказа восстанавливаемого объекта, определяемая для рассматриваемого момента времени. (Параметр потока отказа может быть определен как отношение числа отказов объекта за определенный интервал времени к длительности этого интервала при ординарном потоке отказов.)

Интенсивность восстановления - условная плотность вероятности восстановления работоспособности объекта, определенная для рассматриваемого момента времени, при условии, что до этого момента восстановление не было завершено.

1.6. ПОКАЗАТЕЛИ ДОЛГОВЕЧНОСТИ И СОХРАНЯЕМОСТИ

Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью 1 - у.

Средний ресурс - математическое ожидание ресурса.

Назначенный ресурс - суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния.

Средний ремонтный ресурс - средний ресурс между смежными капитальными ремонтами объекта.

Средний ресурс до списания - средний ресурс объекта от начала эксплуатации до его описания.

Средний ресурс до капитального ремонта - средний ресурс от начала эксплуатации объекта до его первого капитального ремонта.

Гамма-процентный срок службы - срок службы, в течение которого объект не достигает предельного состояния с вероятностью 1 - у.

Средний срок службы - математическое ожидание срока службы. .

Средний межремонтный срок службы - средний срок службы между смежными капитальными ремонтами объекта.

Средний срок службы до капитального ремонта - средний срок службы от начала эксплуатации объекта до его первого капитального ремонта.

Средний срок службы до списания - средний срок службы от начала эксплуатации объекта до его списания.



Гамма-процентный срок сохраняемости - продолжительность хранения, в течение которой у объекта сохраняются установленные показатели с заданной вероятностью 1-у.

Средний срок сохраняемости - математическое ожидание срока сохраняемости.

1.7. ТЕРМИНОЛОГИЯ ПО НАДЕЖНОСТИ В ОБЛАСТИ СИСТЕМ ЭНЕРГЕТИКИ

1.7.1. Предварительные замечания. Специфика больших систем энергетики привела к необходимости пересмотра ряда существующих понятий, а также к дополнению их некоторыми специфическими отраслевыми понятиями и терминами (например, «устойчивоаюсобность», «режимная управляемость», «безопасность» и т. п.) . Цель данного раздела - показать, как отраслевая специфика может и должна отражаться при исследованиях в области надежности. Здесь была сделана попытка отразить следующие особенности больших систем эн-ргетики:

массовый и ответственный характер снабжения продукцией в условиях сплошной электрификации с учетом непрерывности и неразрывного единства процесса производства, передачи и потребления основных видов энергетики;

многоцелевое использование продукции и наличие категорий потребителей с разными требованиями к качеству продукции, к характеристикам непрерывности (бесперебойности) снабжения;

сугубо системный характер не только структуры, но и самого единого технологического процесса выполнения основных функций и, следовательно, определяющую роль и непосредственную тесную связь проявлений свойств надежности с качеством продукции, экономической эффективностью, маневренностью, экологической безвредностью и с другими сопряженными свойствами систем энергетики;

практическое отсутствие или пренебрежимо малую вероятность событий полного отказа системы в целом, а также полного непланового и планового ремонтов системы, что обусловлено наличием большого количества источников и потребителей энергии, наличием большого числа различных видов режимной избыточности систем энергетики;

значительное взаимное влияние управляемой (защищаемой), управляющей (защищающей) и обслуживающей составляющих систем не только по функциям, но и по состояниям;

регионально-отраслевое распределение большого числа непрерывно связанных разнородных элементов и процессов, в частности источников снабжения и потребителей;

значительную взаимную заменяемость как основных частей и видов продукции различных систем энергетики, так и средств обеспечения снабжения потребителей на всех иерархических уровнях.

1.7.2. Дополнительные термины (для систем энергетики).

Система энергетики - человеко-машинная система, предназначенная для добычи (производства, получения), переработки (преобразования), передачи, хранения и распределения соответствующей продукции и снабжения потребителей этой продукцией.

Примечания. I. Системы энергетики в зависимости от их иерархического уровня и производимой продукции рассматриваются как; общеэнергетическая система, охватывающая основные элементы и связи топливно-энергетического комплекса страны; электроэнергетическая система (при одновременном производстве, преобразовании, передаче, хранении, распределении электрической и тепловой энергии); электрическая система (при производстве, преобразовании, передаче и распределении только электрической энергии); теплоснабжающая система (при производстве, преобразовании, передаче, хранении и распределении только тепловой энергии); газоснабжающая система (при добыче и получении, переработке, передаче, хранении и распределении газа и газового конденсата); нефтеснабжающая система (при добы-

Сборник рекомендуемых терминов. Вып. 95. Надежность систем энергетики. Терминология. - М,-Наука. 1980. f




0 1 [2] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
Яндекс.Метрика