Слаботочка Книги

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 [59] 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

Для сварных конструкций процесс релаксации напряжений представляет интерес как средство снижения собственных остаточных напряжений после сварки (см. гл. 7).

§ 2. Свойства сварных соединений при высоких температурах

Свойства сварных соединений при высоких температурах эксплуатации отличаются от свойств основного металла при тех же температурах главным образом по двум причинам.

1. В сварных соединениях возникают участки (металл шва и зоны термического влияния) с иными механическими свойствами, чем у основного металла. Отличия обусловлены иным химическим составом металла шва и его структурой по сравнению с основным металлом. В зонах термического влияния могут происходить глубокие изменения вследствие ослабления границ зерен в результате перегрева, дисперсионного упрочнения этих зон в процессе действия рабочих температур.

2. В сварных соединениях возникает концентрация напряжений, которая при высоких температурах действует как фактор концентрации пластических деформаций ползучести и как фактор постоянно действующего напряжения в местах объемных схем напряженного состояния, где ползучесть затруднена.

Оценка механических свойств шва и зон термического влияния в отдельности не может дать ответа на вопрос о поведении сварного соединения в целом, так как при высоких температурах в процессе ползучести металла происходит сложное механическое взаимодействие отдельных зон, приводящее как к исчерпанию пластичности металла некоторых мест, так и к образованию объемных напряжений в прослойках с последующим хрупким разрушением. Неоднородность механических свойств, обусловленная условиями сварки, реакцией основного металла на термический цикл, выбором присадочных металлов, может быть уменьшена термической обработкой.

Предел ползучести сварного соединения, который характеризует сопротивление ползучести на установившейся стадии, обычно не определяют, так как участок сварного соединения составляет лишь небольшую часть сварной конструкции и не может оказать заметного влияния на общее изменение его при эксплуатации. Предел ползучести отдельно для металла шва определяют, чтобы выбрать такую композицию шва, которая обеспечивает предел ползучести, не уступающий основному металлу. Для этого достаточно провести сравнительное испытание образцов разных составов при температуре эксплуатации и одном уровне напряжений.

Главными свойствами сварных соединений являются длительная прочность и пластичность. Представление об уровне длительной прочности основного металла, металла шва и сварных соединений дают результаты испытаний, приведенные в табл. 6.1.

Сварные соединения для определения длительной прочности чаще всего испытывают на одноосное растяжение. Образец включает



в себя металл шва, околошовные зоны и основной металл. Такое испытание при расположении шва поперек образца позволяет выявить наименее прочный участок, а при расположении шва вдоль образца - наименее пластичный участок сварного соединения. При таких испытаниях из-за малого сечения цилиндрического образца не удается в полной мере выявить эффект контактного упрочнения и возможную локализацию пластических деформаций в отдельных зонах, а также пластичность отдельных очень узких участков, так как общее удлинение образца регистрируется как сумма пластических деформаций всех зон. Эффект контактного упрочнения, соответствующий реальным условиям работы соединений, может быть выявлен на более крупных образцах. Степень разупрочнения сварного соединения относительно основного металла зависит от свойств основного металла и его реакции на термический цикл сварки, атакже от температуры испытания и времени до разрушения. Сварные соединения термически неупрочненных сталей, таких, как углеродистые, хромомолибденогые и аустенитные с карбидным упрочнением, равнопрочны основному металлу, и разрушение обычно происходит вне границы сплавления.

Таблица 6.1

Пределы длительной прочности основного металла, металла шва и сварных соединений Од МПа

Марка стали

электрода

Основной металл

Металл шва

Сварное соединение

Длительность t, ч

да 104 106

lt> 1С» 1С»

10» 10* 10»

Э42А

170 125 80

210 140 90

170 125 80

15ХМ.

240 165 120

260 170 110

240 165 ПО

12Х!МФ

ЭХМФ

170 130 100

190 130 80

170 120 80

12Х18Н!2Т

ЭА!М2фа

130 100 70

180 140 100

130 100 70

X15H35B3T

ЭА4ВЗБ2

240 210 185

260 210 170

240 200 160

Длительная прочность сварных соединений термически упрочненных сталей может быть существенно ниже вследствие разупрочнения в зонах термического влияния. В хромомолибденованадиевых сталях разупрочкяется участок высокого отпуска и неполной перекристаллизации, в аустенитных сталях и сплавах с интерметал-лидным упрочнением - участок вблизи линии сплавления, нагреваемый до температур аустенизации. Зоной разупрочнения может быть и сам шов, если не обеспечена его равнопрочность основному металлу, что обычно более вероятно в сталях с высокой степенью легирования. Разупрочненные участки выступают в роли мягких прослоек (см. гл. 3). Общая закономерность подкрепляющего действия соседних более прочных участков на мягкую прослойку при высоких температурах сохраняется, если разрушение прослойки




происходит вязко. Влияние высоких температур из-за ползучести металла проявляется в слабом подкрепляющем действии соседних участков, но более важно, что при длительных выдержках разрушение в прослойке может произойти хрупко, причем уровень прочности при этом может оказаться даже ниже уровня прочности металла мягкой прослойки. На рис. 6.8 показана зависимость длительной прочности мягкой прослойки от времени, если прочность основного металла выше прочности прослойки. Металл мягкой прослойки, испытанный отдельно, на участке / разрушается вязко, а на участке / при длительных выдержках - хрупко. При контактном упрочнении прочность соединения с прослойкой при вязких разрушениях выше прочности самого металла прослойки (линии 2 и 3), причем для тонкой прослойки (линия 3) эффект упрочнения

проявляется сильнее. Вследствие эффекта контактного упрочнения напряжение в мягкой прослойке не является одноосным, что уменьшает пластическую деформацию ползучести. Уменьшение пластической деформации из-за объемности напряженного состояния приводит, в СВОД)

очередь, к более раннему переходу мягких прослоек от вязкого разрушения к хрупкому, причем их прочность оказывается ниже прочности металла мягкой прослойки. На рисунке переход от вязкого разрушения к хрупкому показан скачкообразно. На самом деле разрушения в мягкой прослойке имеют обычно смешанный характер, сочетая в разной пропорции участки внутризеренных и межзерен-ных трещин. При более длительных выдержках преобладают меж-зеренные (хрупкие) участки разрушения.

Степень проявления эффекта контактного упрочнения зависит от разницы свойств основного металла и мягкой прослойки, а также от относительной толщины прослойки. На рис. 6.9 приведены графики длительной прочности и пластичности сварного соединения с мягкими прослойками разной толщины. Для сравнения взяты основной металл и металл мягкой прослойки, первый из которых {1) более прочен, а второй (2) более пластичен. При t <iti разрушение происходит по основному металлу. При t=ti разрушение переходит в прослойку большей толщины (5), поперечное сужение ф резко падает. При t> ti наклон линии прочности 3 больше, чем линии 1, что объясняется объемным напряженным состоянием и снижением уровня пластической деформации. При этом увеличивается число

Рис. 6.8. Схема изменения длительной прочности металла мягкой прослойки шириной d:

1 - длительная прочно-ть мягкой прослойки при своСодной деформации в вязком (,) и хрупком (/) состояниях; 2, 3 - прочность мягкой прослойки в вязком состоянии при контактном упрочнении (и, > Xj); 2, 3 - прочность мягкой прослойки в хрупком состоянии




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 [59] 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
Яндекс.Метрика