Слаботочка Книги

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 [101] 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

тать на уровне 1ф.мин; реально должен быть обеспечен запас энергетического потенциала линии.

Расчет по (9.22) справедлив лишь для статического низкочастотного режима работы; с ростом скорости передачи информации необходимая минимальная мощность бессбойно передаваемого сигнала растет (рис. 9.17).

Приведенные соображения касаются простейшей линии связи, соединяющей две точки. Конфигурации сетей связи сложнее; наиболее типичны соединения типа «шина», «кольцо», «звезда» (рис. 9.18). В этих случаях расчет соответственно усложняется.

Все созданные ВОЛС используют приемники прямого детектирования, которые не являются оптимальными. С 1980 г. начались исследования по перенесению принципа гетеродинного приема в область оптических частот. Структурная схема гетеродинного фотоприемника (рис. 9.19) содержит такие дополнительные элементы, как опорный лазер, оптический смеситель в виде полупрозрачного зеркала, полосовой фильтр с комплексным коэффициентом передачи K{Q), настроенным на частоту биений Q = (Bi-(В2.

Гетеродинный фотоприем имеет ряд принципиальных преимуществ перед прямым детектированием. Во-первых, улучшается отношение сигнал-шум, поскольку при достаточной мощности гетеродина уровень приема ограничивается только дробовыми шумами принимаемого сигнала. Во-вторых, становится возможным применение таких помехоустойчивых видов модуляции, как частотная (ЧМ) и фазовая (ФМ), тогда как при прямом детектировании ис-

©оооо



Рис. 9.18. Топология сетей ВОЛС: а -шина; б -кольцо; е - звезда (/ - оптический тракт; 2 - коммутатор - распределитель информации; 3 - абоненты)



Вход

Оптический соединитель

СнЕсителк

Фотодиод

Фильтр

Выход

K(Si)

Яг (0)2)

Опорный лазер

Рис. 9.19. Блок-схема оптического супергетеродинного приемника: =i- - оптический сигнал; -»- - электрический сигнал

пользуется лишь амплитудная модуляция. Оба обстоятельства ведут к повышению избирательности и чувствительности; в ряде случаев выигрыш может достигать 10 дБ. Поэтому может быть либо увеличена длина межретрансляционного участка, либо повышена скорость передачи информации.

Важным достоинством гетеродинирования является также возможность переноса операции разделения каналов передачи многоканальной системы связи в радиочастотный диапазон, где она осуществляется более простыми и отработанными средствами, чем в оптическом диапазоне.

Однако оптическое гетеродинирование требует преодоления значительных технических трудностей. Прежде всего резко повышаются требования к когерентности и стабильности (долговременной и кратковременной) используемых в передатчике и гетеродине лазеров. Становится обязательным применение внутреннего или внешнего резонатора, обеспечивающего избирательность мод, введение термостатирования и широкополосных устройств стабилизации несущей частоты. В приемнике появляется новый диапазон промежуточных частот, в котором и осуществляется основная обработка принятого сигнала.

Гетеродинирование, дающее существенное повышение качественных показателей ВОЛС, требует создания новой элементной базы.

9.3. ОБЩАЯ ХАРАКТЕРИСТИКА ВОЛС

Достоинства ВОЛС. Быстрое и уверенное развитие ВОЛС, не ослабевающий интерес к этому направлению со стороны ученых и инженеров обусловлены принципиальными особенностями, которые присущи ВОЛС.

1. Малое линейное затухание и искажение сигнала. Волокна уверенно обеспечивают длину межретрансляционного участка в 30 ... 50 км (что на порядок превышает тот же показатель для коаксиальных металлических кабелей), в отдельных случаях - до 200 км и в перспективе - свыше 1000 км. Очень важно, что потери в линии практически не зависят от частогы сигнала.



2. Сверхвысокая пропускная способность. Это объясняется прежде всего широкополосностью всех элементов ВОЛС (излучатель - волоконный тракт - фотоприемник), использованием принципа оптического мультиплексирования и возможностью размещения в кабеле большого числа волокон. Представляется достижимой скорость передачи информации 102... 10 бит/с по одному кабелю.

3. «Электрогерметичность». Волоконный световод не чувствителен к внешним электромагнитным воздействиям и сам практически не излучает в окружающее пространство. Этим обеспечивается помехозащищенность ВОЛС и скрытность передачи информации. Тем самым развитие ВОЛС открывает кардинальный путь решения проблемы электромагнитной совместимости.

4. Малые габариты и масса. Характерными в этой связи являются три момента. Во-первых, диаметр типичного волоконного модуля составляет всего 0,3 ... 0,5 мм, а площадь поперечного сечения светоканалируемой области (с учетом необходимых отражающей и защитной оболочек) может быть менее 10" cм. Во-вторых, удельная масса используемых материалов (кварц) в несколько раз меньше чем у металлов (медь, свинец); во многих случаях волоконный кабель не имеет защитного металлического экрана или этот экран более легкий. В-третьих, используемые в оконечных устройствах и в ретрансляторах оптоэлектронные элементы миниатюрны, экономичны и легки. В итоге при сравнении с проводными линиями связи ВОЛС дают выигрыш по массе в 2 ... 5 раз, а в отдельных случаях и в 30 ... 100 раз.

5. Эксплуатационные преимущества. Оптоэлектронные принципы преобразования и передачи информации в ВОЛС, использование кварца в качестве передающей среды обусловливают наличие электрической развязки между входом и выходом линии; однонаправленность потока информации, отсутствие обратной реакции приемника на передатчик; пожаро- и взрывобезопасность (исключение искрения и самовозгорания); стойкость волокон к коррозии; высокие прочность волоконных световодов и предельную температуру волокон (до 1000°С); простоту прокладки волоконно-оптического кабеля.

6 Низкая стоимость. Отметим прежде всего неограниченный сырьевой ресурс для производства кварцевых волокон, тогда как запасы меди и свинца непрерывно истощаются. Большая длина межретрансляционного пролета и высокая информационная емкость оптических каналов резко сокращают аппаратурные расходы по сравнению с проводными связными системами. Наконец, значительный экономический эффект обусловливается простотой прокладки и эксплуатации ВОЛС.

Перечисленные достоинства ВОЛС реализованы еще не в полной мере, однако накопленный опыт не оставляет сомнений в их истинности.

Перспективные направления развития. При описании элементов воле, таких как лазеры и светодиоды, фотодиоды, оптические волокна и других, оценивались возможности улучшения их




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 [101] 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
Яндекс.Метрика