Слаботочка Книги

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 [97] 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

сия отдельных мод. В качестве универсального измерительного прибора для контроля качества световодов находит применение импульсный рефлектомер - прибор, основанный на измерении обратного расстояния. Рефлектомер работает по принципу лазерного дальномера: в волокно вводятся световые импульсы, а в паузах между ними к тому же торцу волокна подключается фотодиод, фиксирующий временную зависимость мощности обратного (из волокна) светового потока. Регистрация этой зависимости на экране осциллографа позволяет наглядно наблюдать изменение затухания вдоль световода, быстро обнаруживать места неисправностей и различных искажений (рис. 9.8).

Волоконно-оптический кабель (БОК). Наиболее широкое распространение получили четыре основные конструкции ВОК (рис. 9.9): повинная, в которой волоконные модули обвиваются вокруг центрального упрочняющего элемента; кабели пучковой скрутки,




Рис. 9.Э. Основные разновидности волоконно-оптических кабелей: повивная конструкция (а), кабели пучковой скрутки (б), с профильным упрочняющим э.че-

меитом (е), ленточный (г):

1 - волоконно-оптический модуль; 2 - упрочняющий элемент; S - защитная оболочка



в которых навивке подвергаются группы (пучки) модулей, предварительно уложенные в трубки; кабели с профильным упрочняющим элементом, в которых волоконные модули свободно укладываются в винтообразные пазы упрочняющего элемента; ленточные кабели, в которых скручиванию подвергаются ленты, содержащие несколько волокон и набранные стопой. Первые две конструкции являются классическими, заимствованными из электротехнической практики.

Независимо от конкретной конструкции основными элементами кабеля (кроме волоконных модулей) являются (на рис. 9.9 показаны упрощенные варианты): упрочняющие элементы, обычно полимерные, иногда металлические, служащие для придания кабелю необходимой разрывной прочности и разгрузки волокон от растяжения; наружные защитные покрытия, нередко многообо-лочечные, предохраняющие от проникновения влаги, паров вредных веществ и от внешних механических воздействий; армирующие элементы, повышающие сопротивляемость кабеля радиальным механическим воздействиям; изолированные металлические провода, монтируемые в кабеле наряду с оптическими волокнами и обеспечивающие электропитание ретрансляторов на линии связи; внутренние разделительные слои и ленты, скрепляющие отдельные группы элементов и уменьшающие давление различных элементов конструкции друг на друга; гидрофобный заполнитель, ослабляющий вредное воздействие влаги на оптические волокна.

Обширные исследования световодных кабелей, создание огромного числа разнообразных конструкций, более -чем 15-летний опыт производства и применения этих изделий - все это не привело, однако, к выработке окончательных оптимизированных решений. Появление микронзгибов волокна в составе кабеля, терморассогласование волокна и кабельных материалов, гарантированная защита от воздействия влаги на волокно - эти проблемы по-прежнему далеки от полного разрешения.

Передающие и приемные модули. Назначение передающего модуля (рис. 9.10,а) состоит в преобразовании входной информации в виде, электрических сигналов в оптические сигналы, согласованные с каналом передачи (волоконным световодом); при этом модуль должен надежно функционировать при всех возможных изменениях внешних воздействующих факторов (температуры, влажности, вибрации, колебаний напряжений питания и т. п.).

В устройстве возбуждения сигнал, поступающий через входной электрический разъем, преобразуется в мощные импульсы накачки, превышающие порог генерации лазера. Это устройство может осуществлять и некоторые дополнительные функции: задание постоянного смещения (предпороговая подпитка); придание импульсу накачки специальной формы, обеспечивающей форсирование начала и обрыва генерации; изменение длительности импульса возбуждения по сравнению с поступающим импульсом (например,, для улучшения теплового режима работы лазера) и т. п. В устройство возбуждения могут быть введены и блоки, выполняющие

1Г* , 295.



Фотодиод

Лазер

5"


Рис. 9.10. Структурные схемы:

и - передающего модуля (1 - входной электрический соединитель; 2 - схема возбуждения; 5 - схема обратной связи; 4 - оптическое устройство {4 - светоделитель; 4" - согласующие элементы; 4"- оптический соединитель); 5 - термоэлектриче кий охладитель (&- активный элемент; 5" - схема управления; 5" - датчик температуры); 6 - корпус); б - приемного модуля {1 - оптический соединитель; 2 - усилитель (включая предварите.чьиый усилитель 2); 3 -схема оптимальной (квазиоптимальной) обработки (фильтр); 4 -схема

принятия решения; 5 - электрический соединитель; 6 - корпус) ---»- электрические информационные цепи;---цепи питания; = оптические сигналы

совершенно иные функции: аналого-цифровое преобразование сигнала, кодирование, мультиплексирование и др. В этом случае передающий модуль фактически превращается в оконечное устройство линии передачи информации; его описание выходит за рамки данного рассмотрения. Устройство возбуждения выполняется в виде интегральной монолитной или гибридной микросхемы.

«Центром» передающего модуля является излучатель - именно в нем происходит оптоэлектронное преобразование. Основные излучатели ВОЛС - полупроводниковые инжекционные гетерола-зеры на основе соединений GaAlAs (для диапазона длин волн 0,8... 0,9 мкм) и InGaAsP (1,3... 1,6 мкм). Используются практически все структуры, предназначенные для получения низкого тока накачки и высокой степени когерентности: полосковые лазеры, лазеры с зарощенной структурой, с распределенной обратной связью и сдвоенные лазеры со сколото-связанными резонаторами. Модуль может содержать одновременно несколько лазеров, излучающих на разных длинах волн (для целей спектрального мультиплексирования), в этом случае структурная схема соответственно видоизменяется и усложняется.

Излучение лазера поступает на выходное оптическое устройство, включающее элементы согласования (селективные фильтры или смесители мод; элементы, преобразующие диаграмму направ-




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 [97] 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
Яндекс.Метрика