Слаботочка Книги

[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

уточнение результата интерполяцией

Первый вариант этой книги вышел в свет около тридцати лет назад, когда численные методы и их приложения переживали бурный рост, а специалисты в области численных методов были весьма уважаемы в об-ш,естве.

Вычислители старшего поколения, многие из которых, как и Николай Петрович Жидков, уже ушли из жизни, внесли неоценимый вклад в развитие научного и промышленного потенциала нашей страны, в развитие ее обороноспособности.

В связи с обп1,едоступностыо вычислительной техники настоящее время характерно снижением интеллектуального уровня задач, требующих внимания математиков, в частности специалистов в области численных методов.

Однако мы сохранили общий теоретический настрой книги, исходя из следующих соображений.

Теория численных методов, однажды возникнув, развивается по своим внутренним законам так же, как и другие фундаментальные разделы математики.

Специалисты в области теории численных методов и практики их применения будут неминуемо востребованы в процессе развития промышленности и науки.

Снижение общей математической образованности и общедоступность вычислительной техники делают необходимым создание комплексов программ, допускающих их использование исследователями невысокой математической квалификации. Разработка таких комплексов невозможна без дальнейшего развития теории численных методов.

Авторы признательны О. В. Арушаняну, С. Ф. Залеткину, В. И. Лебедеву и Е. В. Чижонкову за ряд полезных замечаний, а также Н. П. Ва-лединской, и особенно С. Г. Кобелькову и В. М. Староверову за большую помо1ць в оформлении оригинал-макета книги.



Введение

Попытаемся определить место теории численных методов в системе других областей знаний и рассказать о проблемах, возникающих в связи с ее применением, прежде чем переходить к непосредственному ее изложению.

Математика как наука возникла в связи с необходимостью решения практических задач: измерений на местности, навигации и т.д. Вследствие этого математика была численной математикой, ее целью являлось получение решения в виде числа.

Численное решение прикладных задач всегда интересовало математиков. Крупнейшие представители прошлого сочетали в своих исследованиях изучение явлений природы, получение их математического описания, как иногда говорят, математической модели явления, и его исследование. Анализ усложненных моделей потребовал создания специальных, как правило численных или асимптотических методов решения задач. Названия некоторых из таких методов - методы Ньютона, Эйлера, Лобачевского, Гаусса, Чебышева, Эрмита, Крылова - свидетельствуют о том, что их разработкой занимались крупнейшие ученые своего времени.

Настоящее время характерно резким расширением приложений математики, во многом связанным с созданием и развитием средств вычислительной техники. В результате появления ЭВМ (электронно-вычислительных машин или, как часто говорят, компьютеров) с программным управлением менее чем за пятьдесят лет скорость выполнения арифметических операций возросла от 0,1 операции в секунду при ручном счете до 10 операций на современных серийных ЭВМ, т.е. примерно в 10 раз.

Рост возможностей в связи с созданием вычислительной техники носит качественный характер и иногда сравнивается с промышленной революцией, вызванной изобретением паровой машины. Уместно вспомнить, что в итоге промышленной революции и последующего на протяжении двух веков развития науки и техники скорость передвижения возросла от скорости пешехода 6 км/ч до скорости космонавта 30000 км/ч, т.е. в 5000 раз.

Распространенное мнение о всемогуществе современных ЭВМ часто порождает впечатление, что математики избавились почти от всех хлопот, связанных с численным решением задач, и разработка новых методов для их решения уже не столь существенна. В действительности дело обстоит иначе, поскольку потребности эволюции, как правило, ставят



перед наукой задачи, находящиеся на грани ее возможностей. Расширение возможностей приложения математики обусловило математизацию химии, экономики, биологии, геологии, географии, психологии, экологии, метеорологии, медицины, конкретных разделов техники и др. Суть математизации состоит в построении математических моделей процессов и явлений и в разработке методов их исследования.

В физике или механике, например, построение математических моделей для описания различных явлений и изучение этих моделей с целью объяснения старых или предсказания новых эффектов являются традиционными.

Однако в целом работа в этом направлении зачастую продвигалась относительно медленно, поскольку обычно не удавалось получить решение возникаюш,их математических задач и приходилось ограничиваться рассмотрением простейших моделей. Применение ЭВМ и расширение математического образования резко увеличило возможности построения и исследования математических моделей. Все чаш,е результаты расчетов позволяют обнаруживать и предсказывать ранее никогда не наблюдавшиеся явления; это дает основания говорить о математическом эксперименте. В некоторых исследованиях доверие к результатам численных расчетов так велико, что при расхождении между результатами расчетов и экспериментов в первую очередь ищут погрешность в результатах экспериментов.

Современные успехи в решении таких, например, проблем как атомные и космические вряд ли бьши бы возможны без применения ЭВМ и численных методов.

Требование численного решения новых задач привело к появлению большого количества новых методов. Наряду с этим последние полвека происходило интенсивное теоретическое переосмысливание и старых методов, а также систематизация всех методов. Эти теоретические исследования оказывают большую помоц];ь при решении конкретных задач и играют существенную роль в наблюдаемом сейчас широком распространении сферы приложений ЭВМ и математики вообще.

Как уже отмечалось, с помощью современных ЭВМ удалось успешно решить ряд важных научно-технических задач. У непосвященного человека может возникнуть превратное впечатление, что успехи в применении ЭВМ обусловлены только повышением их быстродействия. Реально дело обстоит иначе и сложнее.

Правильнее будет сказать, что достижения в области использования ЭВМ обусловлены сочетанием ряда существенных факторов, без пропорционального развития которых они были бы много скромнее:

1) увеличение быстродействия ЭВМ, расширение памяти, совершенствование структуры ЭВМ, неуклонное снижение стоимости арифметической операции и единицы памяти;

2) разработка программных средств общения с ЭВМ, включающая создание операционных систем, языков программирования, библиотек и па-




[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
Яндекс.Метрика