![]() | |
Слаботочка Книги 1 [2] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 кетов стандартных программ, снижение требований (в случае персональных ЭВМ) к математической и программистской культуре; 3) рост понимания процессов и явлений науки, техники, природы и общества и создание их математических моделей; 4) совершенствование методов решения традиционных математических и прикладных задач и создание методов решения новых задач; 5) рост понимания возможностей применения ЭВМ среди широких слоев общества; распространение так называемой компьютерной грамотности; координация усилий специалистов разного профиля по использованию вычислительрюй техники. Достижения, перечисленные в пп. 3), -5), позволяют ответить на вопрос, какие задачи следует решать с помощью ЭВМ, и организовать их решение, в пп. 2), 4)-как их решать, и в пи. 1), 2) -дают для этого технические и программные средства. Просмотр методов решения стюжных прикладных задач показывает, что, как правило, эффект, достигаемый за счет совершенствования численных методов, по порядку сравним с эффектом, достигаемым за счет повышения производительности ЭВМ. Трудно сформулировать критерий, но которому можно было бы оценивать эффект применения новых численных методов, и еще труднее дать его достоверную количественную оценку. Все же, если сказать, что эффект от применения новых численных методов (при измерении эффекта в логарифмической шкале) при решении прикладных естественнонаучных задач дает 40% общего эффекта, достигаемого за счет применения новой вычистштельной техники и новых численных методов, то эта оценка не будет завышенной. Рассмотрим пример, иллюстрирующий это утверждение. Решение дифференциальных уравнений в частных производных сводится к решению систем линейных алгебраических уравнений с матрицей, в каждой строке которой имеется 5-10 ненулевых элементов. Накануне появления ЭВМ такие системы уравнений решали в случае числа неизвестных порядка 10 - 10; сейчас нередки случаи, когда решаются системы с числом неизвестных порядка Ю-Ю. В гипотетическом случае решения этих задач на современных ЭВМ методами, известными тридцать лет назад, пришлось бы ограничиться системами уравнений с чистюм неизвестных порядка 10-10* (при тех же затратах времени ЭВМ). Конечность скорости распространения сигнала - 300 ООО км/с -ставит уже сейчас существенное ограничение на возможный рост быстродействия однопроцессорных ЭВМ, поэтому значение дальнейшего развития теории численных методов трудно переоценить. В частности, становится все более актуальной проблема разработки численных методов и программных средств для многопроцессорных ЭВМ. Быстрое проникновение математики во многие oOJiacTH знания, в частности, объясняется тем, что математические модели и методы их исследования применимы сразу ко многим явлениям, сходным по своей формальной структуре. Часто математическая модель, описывающая какое- либо явление, появляется при изучении других явлений или при абстрактных математических построениях задолго до конкретного рассмотрения данного явления. В частности, и в теории численных методов, так же как в чистой математике, полезна разработка общих построений. Однако есть разница в подходе чистого и прикладного математика к решению какой-либо проблемы. На языке первого понятие решить задачу означает доказать существование решения и предложить процесс, сходяпщйся к решению. Сами по себе эти результаты полезны для прикладника, но, кроме этого, ему нужно, чтобы процесс получения приближения не требовал больших затрат, например времени или памяти ЭВМ. Ему важно не только то, ito процесс сходится, но и то, как быстро он сходится. При численном решении задач возникают также новые вопросы, связанные с устойчивостью результата относительно возмущений исходных данных и округлений при вычислениях. Наряду с теорией численных методов период бурного развития переживает и ряд других разделов математики, непосредственно обязанных ЭВМ своим возникновением. Применение численных методов и ЭВМ к решению естественнонаучных задач оказывает влияние и на традиционные разделы математики. Математика возникла и развивается как часть естествознания, и долгое время ее развитие существенным образом определялось потребностями физики и механики. Требование математизации новых разделов науки неизбежно приводит к обратному влиянию этих разделов на развитие математики и должно существенно изменить лицо самой математики. Развитие как теоретических, так и прикладных разделов математики в конечном счете определяется потребностями общества и его материальным вкладом в развитие науки, в частности в образование. Несколько десятилетий назад отношение вложений в науку к общим вложениям в народное хозяйство составляло доли процента. Сейчас в индустриально развитых странах это отношение настолько велико, что его дальнейший существенный рост невозможен. Поэтому происходит перераспределение вложений в различные направления науки. Это обуславливает еще один канал влияния прикладной стороны математики на развитие ее теоретических разделов. Прикладные исследования имеют непосредственную отдачу; это усиливает доверие общества к математике, расширяет понимание ее проблем и как следствие способствует увеличению вложения средств с целью ее развития. При реальной работе в области приложений математики возникает большое количество осложнений самого различного, зачастую нематематического характера. Хотя трудно надеяться, что какие-либо теоретические нравоучения мо-гут заменить собственный опыт работы, попытаемся обратить внимание на некоторые вопросы общего характера, важные для работы в области приложений математики. Проводимая ниже систематизация этих вопросов является довольно случайной, условной; по-видимому, можно предло- жить еще добрый десяток подобных классификаций, имеющих не меньшее право на существование. 1. Первостепенное значение имеет выбор направления исследования. Свобода выбора обышо довольно невелика, так как основные контуры направления исследования обычно задаются извне . При выборе направления исследования в пределах имеющихся возможностей полезно иметь в виду следующее правило трех частей , но своему внешнему виду похожее на шутку. Проблемы делятся на: I - легкие, П - трудные, 1П - очень трудные. Проблемами I заниматься не стоит, они будут решены в ходе событий и без вашего вмешательства, проблемы 1П вряд ли удастся решить в настоящее время, поэтому стоит обратиться к проблемам П. 2. Нужно уметь сформулировать на языке математики конкретные задачи физики, механики, экономики, инженерные задачи и т.д., т.е. построить математическую модель рассматриваемого явления. В теоретической науке исследователь, умеющий правильно формулировать, как говорят, ставить новые задачи, как правило ценится выше, чем исследователь, умеющий решать кем-то поставленные задачи. Еще более возрастает роль таких ученых в прикладной науке. Начинающий работу математик часто жалуется на трудности контактов с представителями других наук, которые даже не могут сформулировать стоящих перед ними задач. Правильное формулирование задачи - это научная проблема, не менее сложная, чем само решение задачи, и не нужно надеяться, что кто-то другой целиком сделает это за вас. При постановке проблемы первостепенное внимание должно быть уделено выяснению цели исследования; принимаемая математическая модель явления не есть что-то однозначное, раз навсегда связанное с этим явлением, а зависит от цели исследования. Прежде чем выписывать дифференциальные уравнения, выбирать метод решения и обращаться к ЭВМ, стоит подумать, а не будут ли бесполезны все результаты вычислений? В то же время надо воспринимать как должное, что большая часть результатов вычислений будет выброшена сразу же после их получения. Дело в том, что производимая работа зачастую носит исследовательский характер и трудно заранее предсказать, что и в какой форме следует получить, на каком пути нужно искать численное решение задачи. Цель исследования и описание проблемы обычно уточняются в процессе контактов представителей конкретных наук или руководства организаций (заказчиков) и математиков (исследователей или исполнителей). 3. Успех в прикладной науке требует широкой математической подготовки, поскольку только такая подготовка может обеснйшть приспособляемость к непрерывно меняющимся типам задач, предъявляемых к решению. Одной из пришн необходимости изучения на первый взгляд бесполезных для практики разделов математики является достижение более 1 [2] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|