Слаботочка Книги

1 2 3 4 5 [6] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Токовый шунт

Токовый шунт включают в разрыв фазного провода. Наряду с преимуществами - такими как невысокая стоимость и безразличие к постоянной составляющей тока в измеряемой цепи, шунт обладает серьезными недостатками:


1. Выбор токового шунта требует компромисса, т.к. с одной стороны необходимо получить достаточное для измерения напряжение, т.е. сопротивление шунта должно быть достаточно высоким, а с другой стороны - сопротивление шунта должно быть минимально возможным, для того чтобы исключить внешнее несанкционированное шунтирование (хищение эл.энергии) и

влияние на измеряемую цепь. Например: Для цепи с током нагрузки 5 (50)А можно применить шунт с Кш = 400 мкОм и, соответственно, с напряжением на нём для измерения всего 2 (20)мВ. Однако если посмотреть параметры м.сх для счетчиков -диапазон измерения составляет 500 мВ.

2. Паразитный нагрев шунта за счет выделяемой на нем мощности. При сопротивлении шунта 400 мкОм и максимальном токе 50А выделяемая паразитная мощность равна 1 Вт. В условиях затрудненного охлаждения это вызывает серьезный нагрев шунта и изменение его сопротивления, что сказывается на точности замеров, не говоря о том, что растет потребление энергии всем счетчиком в целом.

3. Измерительная схема находится под высоким напряжением, что затрудняет экранирование и требует повышенных мер по защите от поражения эл. током.

4. Влияние шумов и импульсных помех на измерительную схему весьма критично, поэтому требуется применение специальных заградительных фильтров, которые вносят фазовые искажения при замере.

5. Возрастание погрешности при воздействии высокочастотных сигналов за счет собственной индуктивности шунта



Трансформаторные датчики тока (измерительные трансформаторы тока)

Трансформаторные датчики тока дороже резистивных, но обладают рядом существенных эеимуществ:


1. Измерительные трансформаторы тока, но сравнению с шунтами, работают при значительно меньших падениях напряжения на входе и практически не потребляют.

2. Измерительные трансформаторы тока обеспечивают гальваническую развязку между обмотками, поэтому измерительная схема не находится под высоким потенциалом как при использовании шунта и ее можно легко экранировать.

3. Параметры трансформатора тока практически не изменяются во времени и не зависят от температуры.

4. Коэффициент трансформации легко выдерживается при производстве и остается всегда постоянным.

5. Трансформаторы тока прекрасно гасят импульсные помехи в измерительной цепи без применения дополнительных фильтров

6. Обеспечивают минимальный фазовый сдвиг между цепями измерения напряжения и тока, т.к. фильтрация измерительного сигнала производится за счет собственной индуктивности трансформатора.

7. Простота измерения 3-х фазных токовых сигналов за счет гальванической развязки токовых проводов и измерительной части.

В качестве датчиков тока (измерительных трансформаторов тока) обычно используются трансформаторные датчики двух типов:

1. Трансформатор нагруженный на прецизионный резистор - трансформатор тока. Обычно с магнитопроводом из аморфных или нанокристаллических сплавов. Выходное напряжение, снимаемое с резистора, пропорционально току первичной обмотки;

2. Дифференцирующий трансформатор di/dt, работающий в режиме ударного возбуждения. Обычно без магнитопровода (воздушный). Выходное напряжение трансформатора пропорционально скорости изменения тока первичной обмотки. Применение трансформаторного датчика тока в счетчиках электроэнергии может сочетаться с применением резистивного датчика напряжения или трансформатора напряжения. Обычно применяют резистивный делитель как наиболее дешевый.



Измерительный трансформатор тока с нагрузочным

резистором


Идеальным режимом работы измерительного трансформатора тока является режим короткого замыкания его вторичной цени. В этом режиме но вторичной цени трансформатора тока протекает индуцированный ток, который создает в магнитопроводе вторичный поток магнитной индукции, компенсирующий поток магнитной индукции от тока первичной цепи. В результате в сердечнике, в стационарном режиме, устанавливается близкий к О суммарный поток магнитной индукции, индуцирующий во вторичной обмотке небольшую ЭДС, поддерживающую ток во вторичной цепи пропорционально значению тока первичной цепи.

Безопасность вторичных цепей при больших входных токах обеспечивается за счет вхождения сердечника в насыщение. Однако, если вторичную цепь трансформатора тока разомкнуть (аварийный режим), то исчезновение вторичного тока и созданного им магнитного потока приведет к значительному росту суммарного магнитного потока и соответственно увеличению ЭДС во вторичной обмотке до огромных значений, что может вызвать пробой изоляции. Кроме того, при большом магнитном потоке резко увеличиваются потери в сердечнике, что вызывает его разогрев.

Погрешности трансформаторного датчика тока складываются из токовой погрешности (погрешность действительного коэффициента трансформации) и угловой погрешности (разность фаз между токами первичной и вторичной цепи). Погрешности определяются двумя факторами: ограниченной магнитной проницаемостью магнитопровода и ненулевым значением сопротивления нагрузки. Вместе с тем погрешность трансформатора тем меньше, чем меньше магнитное сопротивление магнитопровода, т.е. больше магнитная проницаемость материала, больше сечение сердечника и меньше его длина, а также чем меньше его вторичная нагрузка (идеал - к.з. вторичной обмотки). Важно учитывать, что магнитная проницаемость зависит от напряженности магнитного поля, и практически постоянна только в области слабых полей. Поскольку трансформаторы работают в слабых результирующих полях, то для них необходимо использование материала с высокой начальной магнитной проницаемостью.

В качестве сердечников трансформаторных датчиков тока используются нанокристаллические или аморфные сплавы.




1 2 3 4 5 [6] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Яндекс.Метрика